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Abstract

We present a GOMS-MHP style model-based approach to
the problem of predicting human habit capture .errors.
Habit captures occur when the model fails to allocate
limited cognitive resources to rel_ieve task-relevant
information from memory. Lacking the unretrieved
information, decision mechanisms act in accordance with

implicit default assumptions, resulting in error when relied
upon assumptions prove incorrect The model helps
interface designers identify situations in which such

failures are especially likely.

Introduction

Advances in our understanding of human cognition have

not informed the design of complex human-machine

systems to the extent possible. This results in part because

the complexity of these systems poses a formidable

challenge, and in part because the knowledge is not in

form that can readily be applied in a design setting. Much

of our knowledge of human capabilities and limitations

comes fi'om laboratory experiments using simple tasks and

fight controls over extraneous variables. These controls

are necessary to isolate mental operations of interest.

However, it is hard to generalize the results to complex

applied environments in which operators must plan the

execution of multiple concurrent tasks in the face of

considerable uncertainty. Under these conditions, no single

mental operation determines behavior. Rather, is

necessary to understand how the diverse set of internal

resources are managed to accomplish tasks. Even when
certain known facts about human performance could be

usefully applied in design, human-system designers would

have difficulty locating those facts and understanding how

they might apply to their specific problem. Such facts are

ot_en buried in bulky sets of guidelines, whose rules
themselves are oRen difficult to match to specific

problems. Or, they ate contained in scientific journals not

easily comprehended by non-specialists. Handbooks can

be useful, but still require the designer to know what

information is needed and how to match the design

requirements to the available data.

The introduction of GOMS modeling in

conjunction with the Model Human Processor [Card84],

made available a promising new methodology for dealing

with complexity at a systems level. The Model Human

Processor (MHP) provided researchers with a cognitive

architecture whose resources and parameters conswained

behavior while GOMS provided a formal method for

procedure execution that enabled the representation of

rules and procedures for selecting action in complex task

domains [Iohn94; Gray93].

Despite the success and widespread use of GOMS

modeling, it has proven difficult to account for human

error, or to handle the executive control needed to manage

multiple tasks. These are significant shortcomings when

modeling domains such as air traffic control where the

coordination of multiple tasks is central and the concern

with human error paramount. If we are to develop

representations of human behavior that aid the designers of

procedures and displays for air traffic control, we must
deal directly with the source of human error in a dynamic,

multitasking environment.

We have constructed a human operator model called

APEX that is intended to help identify situations in which

the design of equipment and procedures might

inadvertently contribute to operator error [Freed97]. In

keeping with the GOMS-MHP approach, APEX combines
mechanisms for proceduralized task execution with a

cognitive architecture that specifies resources. Our choice
for a task execution model was driven by the demand for

flexible scheduling of multiple tasks [Freed98a]. We

replaced the GOMS component with a similar but more

powerful procedure execution mechanism based on RAPs

[Firby$9]. Originally designed to enable robots to



interleave and coordinate multiple tasks in dynamic,

uncertain task environments, the RAP approach provides

several important capabilities including:

• continuous coordination of concurrent activities

• diverse mechanisms for handling task interruption,

task switching, and resumption

• mechanisms needed to cope with uncertainty inherent

in complex, dynamic environments

• monitoring for and recovering from task failure

Our implementation of these capabilities is embedded
within a human resource architecture that enforces human

limitations on behavior [Freed98b]. Components of the

architecture, each representing a perceptual, cognitive, or
motor resource, are associated with limitations and

parameters. For example, the vision component has a

locus-of-attention parameter. Execution can set this value

to a single location in the current visual field. Because the

visual component restricts access to visual information

outside the selected location, agent performance depends
on the effectiveness with which the locus-of-attention

resource is allocated.

Using the execution module and resource architecture

to simulate human behavior requires specifying domain-

specific rules and procedures. Performance will depend on

how those procedures use limited resources to carry out a

task. Thus, the process of specifying procedures should be
informed by an understanding of the strategies people use

to manage limited resources. For example, people

sometimes rely on written lists rather than faulty memory

when shopping for groceries, or scan the market shelves

for needed items, replacing a difficult memory task (recall)

with an easier one (recognition). Such strategies become

incorporated into people's routine procedures for carrying

out a task, enabling them to circumvent limits that would

otherwise affect performance [Salthouse91]. Modeling the

effects of resource limitations on performance thus

requires representing the procedural end-product of

adaptation to routine tasks. While these adaptations are

generally useful, they create the opportunity for error. We

will discuss the role of such adaptations in producing a

form of error called a habit capture and present a human

operator model that incorporates this analysis to predict

error in realistically complex environments.

Habit Capture Errors

Human error is an important concern in safety-critical

work environments such as air traffic control. A survey of

air traffic control related errors revealed that a high

percentage of controller errors involve failures to carry out

some intent, or failure to apply updated knowledge of the

world in selecting an action. Errors involving failures to

execute deferred intentions are examples of a class of

memory phenomena referred to as prospective memory.

Failures of prospective memory are common in daily life

and include such errors as tailing to take medication at

prescribed times. Typical of prospective memory failures,

operators often recognized their error shortly afterward.

This suggests that at least some cases of prospective

memory failures result not from a failure to successfully
retrieve information, but a failure to make a retrieval

attempt.

Our model ascribes such failures to initiate

retrieval to the misallocation of limited resources during
action selection. We illustrate the model using a class of

prospective memory errors that we term habit captures.

The signature of a habit capture error is the execution of a

habitual action in place of an intended but non-routine

action [Reason82]. A common example of such an error

might be the failure to stop at the market on the way home.

The intent is formed before leaving work, but cannot be

carried out until the car reaches a specific turn-off. When

this occurs, instead of exiting the highway at the intended

exit, the driver proceeds on the normal, habitual route.

Accounting for habit captures that result from

failure to initiate a memory retrieval requires an

understanding of when retrievals occur. By retrieval, we

refer to memory access that requires the allocation of a

limited capacity resource that model can only retrieve one

item of information at a time [Carrier95]. The model

assumes that no capacity-limited memory access is

required for routine behaviors, which are encoded directly

in procedures. For non-routine behaviors, the model must
decide whether or not to allocate limited resources to

retrieve the required information. It is this difference in
the resource demands of routine and non-routine

information that underlies the generation of habit capture
errors.

Anomaly-driven retrieval

In making decisions about how to allocate resources, the

model is guided by observed anomalies and internal goals.
Anomaly-driven memory retrievals are initiated to

explain unusual or ambiguous aspects of the current task

environment. For example observing a basket of laundry

in the middle of one's living room might trigger an attempt

to locate an explanation in memory. People can take

advantage of this aspect of human memory processing to

provide timely reminders that help manage tasks. Thus, a

person might intentionally place laundry in a Eonspicuous,

atypical location as a reminder to do the wash. Similarly,

people make use of unintended or incidental perceptual
structure in the task environment to cue retrievals. For

instance, if one were interrupted while bringing laundry to

a washing machine, setting the laundry basket down might
later serve to remind one to resume the task.



To simulate these anomaly-driven memory retrievals, our

model assumes that people acquire expectations about the

perceptual structure of their task environment and that they

monitor these expectations in the normal course of

carrying out a task. We" further assume that when the

environment regularly provides timely perceptual

indicators that a memory retrieval is warranted, human

decision-making processes adapt to take advantage of

them. Such adaptations have been demonstrated in a

variety of task domains; in some cases, people seem to use

goal-driven retrieval in the early stage of learning a task,

but gradually come to rely on perceptual indicators to

initiate retrieval (see e.g. [Vera96]).

Learning to use environmental cues can be seen

as an adaptive response to opportunity-costs associated

with memory retrieval. Since only one memory retrieval

attempt can be processed at a time, use of retrieval

mechanisms for one task blocks or delays their use for all

other tasks. Though they provide an efficient way to

manage a limited resource, adaptations that rely on

perceptual cues entail their own cost. In particular, when

the usual cues are absent, reliance upon them maya'esult in

failure. For example, if someone removes a basket of

laundry from the living room, its value in reminding a

person of their cleaning task will be undermined. More

generally, habit capture errors are especially likely when

perceptual indicators normally present in the task

environment are absent, and thus cannot trigger needed

memory recall actions.

It is helpful in analyzing such failures to contrast

nominal behavior, in which a timely memory retrieval

results in correct behavior, from error behavior in which

no retrieval is initiated. In the latter case, a person behaves

as if the unretrieved memory item had never been encoded.

Decision-making processes can be described as operating

under an implicit default assumption that some typical

condition, opposite that implied by the memory item, holds

in the current situation. In the example in which an

intentionally placed laundry basket was removed and a

failure to do laundry results, we could thus say that

decision mechanisms implicitly assume that no intention to
do laundry exists. The idea of a default assumption is

useful in specifying what behavior is likely to follow when

a relevant memory item is not retrieved. It also serves a

useful practical purpose in explaining simulated behavior,

allowing the simulation trace to make explicit reference to
a critical non-event -- i.e. the non-occurrence of a

retrieval attempt.

Goal-driven retrieval

Goal-driven retrievals are initiated to acquire information

for some active task. For example, one might query

memory to determine where the car is parked when
deciding where to exit a large office building. In our model

[FreedqSal, routine goal-driven behavior results from the

execution of procedures, each represented as a set of

primitive and non-primitive steps. Executing a primitive

initiates activity in model resources, specifying simple
actions such a gaze shift, utterance, or memory retrieval

attempt.

Non-primitives specify a subgoal that, in many
cases, can be accomplished by any of several alternative

methods, each represented as a separate procedure.

Executing a non-primitive requires selecting a method and

then recursively executing each of its steps. Procedures

often include information acquisition steps that satisfy

information prerequisites for subsequent steps of the same

procedure. For example, a procedure for getting home

from work might include steps to acquire the location of

one's car and then go to the specified location.

In many cases, information acquisition can be

achieved by any of several alternative methods. Decision

mechanisms can also forego explicit information

acquisition, especially in highly routine tasks where the

outcome of the acquisition process would tend to be some

predictable value; instead, behavior conforms to the default

assumption that this predictable value holds in the current

situation. Thus, the exit path from one's office building

can be selected by retrieving the car's current location
from memory, visually scanning for the car out a window,

or asking a companion. Alternately, one can simply leave

by the usual exit without ever explicitly considering the

car's location. The implementation of our model treats

reliance on a default explicitly -- i.e. as another method

for acquiring task-relevant information. To reflect its

psychological status as an implicit rather than explicit

event, the method of relying on a default takes no time and

requires no limited resources.

In our model, which information acquisition

method (including reliance on a default) is used in a

particular instance depends on several factors. For this

discussion, we will focus on one such factor. In particular,

aRer learning of some unusual situation, we assume that a

person will be less likely to rely on a default (that the usual

situation holds) for some time thereafter. For instance, if a

person parks his/her car somewhere other than the usual

location, decision mechanisms that usually rely on the
default location will have an increased likelihood of

retrieving location from memory when exiting the

building. We further assume that this likelihood decreases

to the usual level over time, although time here is just a

proxy 'for interference and other cognitive phenomena not

currently represented in the model.

The likelihood of a habit capture error will thus

depend partly on the amount of time since an unusual
condition was observed and partly on the rate at which
increased likelihood of retrieval declines. Our model

handles the process of determining whether decision-

mechanisms rely on a default or retrieve from memory in a



simplified way. Whenever an intention or unusual

condition is encoded (or retrieved), the model generates

bias. causing any attempt to acquire information about that

condition to avoid reliance on the default. Representations

of bias are associated with a fixed expiration interval;

when this interval has passed, the decision mechanisms
revert to the usual method of determining an information

acquisition method for the specified condition.

Like Anderson [1990], we assume that adaptive

processes largely determine memory behavior, allowing

experienced practitioners of a task to approximate optimal

expiration interval values. An optimal intervals weighs the

risk of habit capture against the opportunity cost and time

cost of retrieving a memory value that merely confirms the

default. The ability of memory to approximate near-

optimal intervals depends on experientially-derived

knowledge of factors such as the expected duration D of a

non-default condition, expected interval I between
successive observations of a non-default (bias is refreshed

each time the condition is observed), and expected risk of

reducing performance at another task by blocking retrieval

(opportunity cost). We approximate optimum expiration

interval EI = min(D,I).

Since bias can be maintained by retrieving the

non-default condition from memory, anomaly-driven

mechanisms that use retrieval to explain non-default

conditions can be used to support goal-driven retrieval.

For instance, placing a written reminder that one's car is

parked at an unusual location in a conspicuous place, and

observing the reminder during the day, increases the
likelihood that decision mechanisms will explicitly

consider the car's location when determining where to exit

the building. Such strategies will tend to fail (and result in

habit capture errors) in the same conditions that the purely

anomaly-driven strategies will fail _ i.e. when needed

perceptual support is absent. We illustrate how our model
simulates such an error in a hypothetical air traffic control

scenario. Greater detail about the implementation of the

model is given in [Freed9$b].

Example air traffic control scenario

At a Terminal Radar Control center, one controller will

oRen be assigned to the task of guiding planes through a

region of airspace called an "approach sector" [Stein93].

This task involves contacting planes at various sector entry

points and getting them lined up at a safe distance from

one another on landing approach _o a particular airport.
Some airports have two parallel runways. In such cases,

the controller will form planes up into two lines.

Occasionally, a controller will be told that one of the two

runways is closed and that all planes on approach to land

must be directed to the remaining open runway. A
controller's ability to direct planes exclusively to the open

runway depends on remembering that the other runway is

closed. How does the controller remember this important

fact? Normally, the diversion of all inbound planes to the
open runway produces an easily perceived remfnder. In

particular, the controller will detect only a single line of

planes on approach to the airport, even though two lines

(one to each runway) would normally be expected.

However, problems can arise in conditions of low

workload. With few planes around, there is no visually
distinct line of planes to either runway. Thus, the usual

situation in which both runways are available is

perceptually indistinguishable from the case of a single

closed runway. The lack of perceptual support would then

force the controller to rely on memory-driven retrieval and
thus increase the chance of error.

Simulation and Implementation

In our air traffic controller simulation model, the arrival of

a plane at a certain position in airspace (as observed on the

radar display) causes the simulated controller to begin the

task of selecting a destination runway for the target plane.

We assume that for highly routine decisions such as

runway selection, human controllers can be expected to

know which factors to consider in making the decision and

how to appropriately weight each factor. This knowledge

is incorporated into the following decision procedure:

Procedure27: select runway for ?plane

1) determine which runway has fewer planes on approach
=> ?factor/

2) det. which approach would be faster => ?factor2
3) det. which approach eaxier for me => ?factor3
4) def. which runway safest for ?plane => ?factor4
5) det. left runway open? => ?factor5
6) det. right runway open? => ?factor6
7) compute-decision Oractorl factor 2,..)

Generally, a decision procedure consists of n

steps. The fast (n-l) prescribe information acquisition

tasks to evaluate potentially decision-relevant factors. The

nth step runs a simple rule that selects from a fixed set of

decision alternatives (leR-runway or right-runway in this

case) based on factor values.

Factor evaluation steps can typically be
accomplished by any of several methods. In this example,

the controller could determine the status of the left runway

by re,eying information from memory, asking another

controller, or by assuming the most likely condition - i.e.

that the runway is open. Since runways closures are rare

and memory retrieval is expensive, we assume that a

typical controller will rely on the default unless transient

bias promotes a more effortful alternative.
In the described scenario, the simulated controller hears

that the left runway is closed. Interpretation mechanisms

cause a propositional representation of this fact to be



encoded in memory. The encoding event generates bias

according to the following rule:

IF (closed ?runway) is encoded in memory

THEN bias procedure-27, step5. (exp/re in I0 rain)

Consequently, procedure execution mechanisms

will be biased against relying on the default value when

carrying out step5 of procedure27 for the next ten minutes
i.e. the availability of the left runway will be verified

rather than assumed when selecting a runway for an

approaching plane.

Eventually, the initial bias expires. To select a

runway for a newly arrived plane, the controller will once

again consider only the default assumption. Other factors

then determine which runway is selected. For example, the

controller may choose to direct a heavy plane to the longer

left runway which, in normal circumstances, would allow

the plane an easier and safer landing. With the left runway
closed, actions following from this decision result in error.

Avoiding error requires maintaining appropriate
bias. In a variation of the described scenario in which no

error occurs, visually perceived reminders of thd runway

closure cause bias to be periodically renewed. In particular,

whenever visual attention mechanisms attend to plane

icons on an approach path to the airport, interpretation
mechanisms note the absence of a line of planes to the left

runway and signal an expectation failure on the basis of the

following rule:

IF I am visually attending to left approach path, and
visual group of plane icons not detected

THEN signal-anomaly: (absent plane-group left)

In general, whenever an expectation failure

occurs, a task to explain the observed anomaly is initiated.

The first step in such a task is to try to match the anomaly
to a known explanation-pattern (XP) [Schank86]. A match

results in a task to verify the explanatory hypothesis

provided by the XP.

Explanation-pattern

Anomaly: (absent plane-group ?left-or-right)

Candidate Explanation: (closed runway ?runway)

To verify." retrieve from memory (closed runway ?runway)

In principle, verifying a hypothesis could involve

mental and physical actions of any kind. In this case, the

contents of working memory are sufficient to prove or

disprove the explanation; the anomalous absence of planes

on approach to the left runway is explained as a result of

the left runway's closure.

Bias renewal occurs whenever the working

memory item that originally produced the bias is

reencoded or retrieved. Thus, retrieving (closed runway

left) triggers the bias generation rule just as if the

proposition had been encoded for the first time. Thus, the

unusual arrangement of planes on the radar scope acts as a

constant reminder, preventing the controller from reverting

to the use of its default assumption and thereby preventing
error.

Aiding user interface design

By helping to simulate such scenarios, the model can direct

an interface designer's attention to potential design-

facilitated errors that might otherwise be overlooked.

Moreover, the model's ability to make explicit how such

errors might occur can help indicate the best way to refine

an interface. For example, one of the difficulties in

designing a radar display is balancing the need to present a

large volume of information against the need to keep the

display uncluttered. In this case, by showing how the error
results from low traffic conditions, the simulation indicates

a clever fix for the problem: use an icon to explicitly

represent runway closures, but only display the icon in low

plane-load conditions when it is most needed and produces
the least clutter

Conclusion

We have presented a GOMS-MHP style approach to the

problem of predicting human habit capture errors in the
domain of air traffic control. Our model assumes that

people manage limited memory retrieval resources by
taking advantage of perceptual indicators that a retrieval

is warranted, and by incorporating knowledge about when

retrievals should occur into routine procedures. Habit

captures occur when decision mechanisms fail to retrieve

intentions or knowledge of unusual conditions; lacking

the unretrieved information, decision mechanisms act in

accordance with implicit default assumptions resulting in

error. The model helps to identify situations in which

such errors are especially likely. Interface designers can
then use this information to reduce the likelihood of error.
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